Approximate average head models for EEG source imaging.

نویسندگان

  • Pedro A Valdés-Hernández
  • Nicolás von Ellenrieder
  • Alejandro Ojeda-Gonzalez
  • Silvia Kochen
  • Yasser Alemán-Gómez
  • Carlos Muravchik
  • Pedro A Valdés-Sosa
چکیده

We examine the performance of approximate models (AM) of the head in solving the EEG inverse problem. The AM are needed when the individual's MRI is not available. We simulate the electric potential distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse problem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We propose several new AM. These are the average of many individual realistic MRI-based models, such as surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated considering source moments not constrained to be normal to the cortex. We also show that the imperfect anatomical correspondence between all cortices is the most important cause of localization errors. Our average models perform better than a random individual model or the usual average model in the MNI space. We also show that a classification based on race and gender or head size before averaging does not significantly improve the results. Our average models are slightly better than an existing AM with shape guided by measured individual electrode positions, and have the advantage of not requiring such measurements. Among the studied models, the Average Lead Field seems the most convenient tool in large and systematical clinical and research studies demanding EEG source localization, when MRI are unavailable. This AM does not need a strict alignment between head models, and can therefore be easily achieved for any type of head modeling approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Approach for Reconstruction of Moving Brain Dipoles

EEG source reconstruction is a challenging task and several methods have been applied to this ill-posed inverse problem. Most of the reconstruction techniques rely on imaging models, where the neural activity is described by a dense set of current dipoles. On the other hand, the point source models, which employ a small number of equivalent current dipoles, has received less attention. While bo...

متن کامل

Effects of Head Models and Dipole Source Parameters on EEG Fields

Head model and an efficient method for computing the forward EEG (electroencephalography)problem are essential to dipole source localization(DSL). In this paper, we use less expensive ovoid geometry to approximate human head, aiming at investigating the effects of head shape and dipole source parameters on EEG fields. The application of point least squares (PLS) based on meshless method was int...

متن کامل

Reciprocity Basis for EEG Source Imaging

In recent years, significant progress has been made in the area of EEG/MEG source imaging. Source imaging using simple spherical models has become increasingly efficient, with consistently reported accuracy of within 5mm. In contrast, source localization on realistic head models remains comparatively modest, with sub-centimeter accuracy being the exception rather than the norm. A primary reason...

متن کامل

Head model and electrical source imaging: A study of 38 epileptic patients☆

Electrical source imaging (ESI) aims at reconstructing the electrical brain activity from scalp EEG. When applied to interictal epileptiform discharges (IEDs), this technique is of great use for identifying the irritative zone in focal epilepsies. Inaccuracies in the modeling of electro-magnetic field propagation in the head (forward model) may strongly influence ESI and lead to mislocalization...

متن کامل

A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 185 1  شماره 

صفحات  -

تاریخ انتشار 2009